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Abstract

In this paper, the dynamic electromechanical response of a piezoelectric strip with a central crack vertical to the
boundary was investigated. Based on the superposition principle and integral transform techniques, the present
problem was reduced to the solution of two pairs of dual integral equations. To accommodate the ®nite size of the

strip, two di�erent Fourier transforms, about the x and y coordinates, were assumed. The solution was obtained in
the Laplace transformed domain in terms of Fredholm integral equations of the second kind by a modi®ed
Copson's method. The Laplace inversion was then carried out to obtain the resulting dynamic stress and electric

displacement intensities. Unlike the ®ndings observed in the static fracture behavior of piezoelectric materials, the
present study indicates that the dynamic electric ®eld will retard or promote the crack propagation at the di�erent
loading stages. Furthermore, the dynamic electric response is proportional to the electric impact and is independent

of the applied mechanical impact. It is also shown that both the mechanical and electric response around the crack
tip are greatly in¯uenced by the free boundaries of the piezoelectric strip. 7 2000 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

In view of their brittleness, piezoelectric materials have a tendency to develop critical cracks during
the manufacturing and the poling processes. The existence of these defects will greatly a�ect the
mechanical integrity and electromechanical behavior of this class of materials (Jain and Sirkis, 1994).
Although so much attention has been focused on the static fracture analysis of piezoelectric materials,
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less attention has been paid to the study of the corresponding dynamic problem. This may be due to the
complexity of the mathematical treatment and may be due to the presence of complex electromechanical
coupling terms, especially when the ®nite size of the strip is taken into account. It is for this reason that
we o�er the current study.

It is worth noting, however, that a number of researchers have contributed to the steady state
dynamic response of a cracked piezoelectric material. Shindo and Ozawa (1990) ®rst investigated
the steady state dynamic response of a cracked piezoelectric material under the action of incident
plane harmonic waves. The dynamic Green's functions for anisotropic piezoelectric materials were
derived by Norris (1994). The results were only presented in the time transform domain, because
of the complexity associated with the time inversion. Khutoryansky and Sosa (1995) proposed the
dynamic representation formulas and fundamental solutions for piezoelectricity. Shindo et al. (1996)
studied the dynamic response of a cracked dielectric medium under the action of harmonic waves
in a uniform electric ®eld. In their most recent work, Narita and Shindo (1998a) investigated the
scattering of Love waves by a surface-breaking crack in a piezoelectric layer over an elastic half
plane. Meguid and Wang (1998) investigated the dynamic anti-plane interaction of two cracks in
piezoelectric medium under incident antiplane shear wave loading with the conducting crack
assumption.

In engineering applications, piezoelectric materials may experience transient dynamic loads as well as
steady harmonic loads. It is, therefore, of great importance to investigate the transient dynamic response
of cracked piezoelectric materials. Li and Mataga (1996) studied the problem of a semi-in®nite crack
propagating in an in®nite piezoelectric material. They focused their attention on the e�ect of the
propagating velocity of the crack on the dynamic response of the electromechanical ®eld around the
crack tip. In their work, the transient dynamic electromechanical loads were taken into consideration
and a new surface wave was reported.

The electric boundary condition along the crack faces is still an open problem. Generally, there
are two well-accepted electric boundary conditions, namely: the permeable and impermeable
boundary conditions. In an investigation by McMeeking (1989), he concluded that the
concentration of both the mechanical and electric ®elds are governed by a parameter �ef=em��b=a�,
where b/a is the aspect ratio of an elliptic crack, and ef and em are the respective dielectric
coe�cients of the medium in that crack (i.e., the permittivity of air or vacuum in general) and the
piezoelectric matrix. He further argued that as long as ef=em is less than one-tenth of b/a and
b=a� 1, the impermeable crack solution serves as a good approximation to the problem. Pak and
Tobin (1993) indicated that the results for an elliptic inclusion in piezoelectric materials will reduce
to those of an impermeable crack problem as the inclusion approaches a crack. Some researchers
such as Pak and Goloubeva (1996), Zhao et al. (1997), Liu et al. (1998) and Qin and Mai (1999)
use the impermeable condition, while others disagree with this condition, including Zhang et al.
(1998) and Narita and Shindo (1998b, 1998c). Furthermore, recent experimental research by the
authors using lead lanthanum zirconate titanate (PLZT) showed arcing across the interface,
indicating an impermeable interface condition. It is also worth noting that the most recent work
on the static fracture behavior of piezoelectric materials (Gao and Fan, 1999) had shown that the
stress ®eld intensity using vacuum boundary condition, outlined by Li and Mataga (1996), is the
same as that obtained based upon the impermeable crack assumption.

In the present work, we develop a new model to treat the dynamic fracture behavior of a vertical
crack embedded in a ®nite width piezoelectric strip. Impermeable condition is adopted in the present
study and attention is devoted to transient response and the boundary e�ects on the dynamic stress and
electric displacement intensities, which is rarely observed in the literature. By employing integral
transform techniques and the superposition principle, the problem is reduced to two pairs of dual
integral equations which are solved in terms of Fredholm integral equations of the second kind.
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2. Formulation of the problem

Consider a piezoelectric strip of width 2h containing a Gri�th crack of length 2a with remote
antiplane mechanical and inplane electric impacting loads acting on it, as depicted in Fig. 1. The
electromechanical impact is a Heaviside step function of time, i.e., tzy�t� � t0H�t�; Dy�t� � D0H�t�: With
the aid of the superposition principle, the present problem can be decomposed into two problems: (a)
uniform electromechanical impact on a crack-free piezoelectric strip with non singular behavior, and (b)
accompanying electromechanical impact loads tzy�t� � ÿt0H�t� and Dy�t� � ÿD0H�t� acting on the
surfaces of the crack in a piezoelectric strip. Details of problem (b) are given below.

A set of Cartesian coordinate (x, y, z ) is attached to the center of the crack. The x-axis is directed
along the crack line and y-axis is perpendicular to it. The poled piezoelectric ceramic strip, with z-axis
being the poling direction, occupies the region �ÿh < x < h, ÿ1 < y <1), and is thick enough in that
direction to allow a state of antiplane strain. Because of the assumed symmetry in geometry and
loading, it is su�cient to consider the problem only in the regime 0 < x < h and 0 < y <1:

The piezoelectric boundary value problem for anti-plane shear is simpli®ed if we consider only the
out-of-plane displacement and the inplane electric displacement, such that the constitutive equation can

Fig. 1. A piezoelectric strip with a vertical crack under antiplane electromechanical impact load.
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be written as (Parton, 1976)

tzj � c44w,j � e15f,j �1�

Dj � e15w,j ÿ e11f,j �2�

where tzj, Dj �j � x, y� are the antiplane shear stress and inplane electric displacement; c44, e15, and e11
are the shear modulus, piezoelectric coe�cient and dielectric parameter; w and f are the mechanical
displacement and electric potential, respectively.

The dynamic antiplane governing equations for piezoelectric materials are

c44r 2W� e15r 2f � r@ 2w=@ t2 �3�

e15r 2wÿ e11r 2f � 0 �4�

In the above equations, r 2 � @ 2=@x 2 � @ 2=@y2 is the two-dimensional Laplace operator and r is the
mass density of the piezoelectric material.

Substituting Eq. (4) into Eq. (3), we can obtain the wave equation in piezoelectric materials, viz.

r 2w � cÿ22 @ 2w=@ t 2 �5�

in which,

c2 �
��������
m=r

p
; m � c44 � e215=e11: �6�

Let us now assume that the two edges of the strip are stress and electric displacement free, and that the
electromechanical impact acts suddenly on the surface of the cracks at t � 0, so that the boundary
condition can be expressed as follows:

tzx�h, y, t� � Dx�h, y, t� � 0, ÿ1 < y <1

tzy�x, 0, t� � ÿt0H�t�, 0 < x < a

Dy�x, 0, t� � ÿD0H�t�, 0 < x < a

w�x, 0, t� � f�x, 0, t� � 0, aRx < h �7�

It should be noted that the electrically impermeable boundary condition of the crack is adopted in Eq.
(7). This boundary condition has been used by numerous other investigators, including: McMeeking
(1989), Pak (1990), Suo et al. (1992), Sosa (1992), Zhang and Hack (1992), Pak and Goloubeva (1996),
Zhao et al. (1997), Liu et al. (1998), Qin and Mai (1999), among others. The electric boundary condition
along the free edges of the strip, expressed by the ®rst equality of (7), can be readily obtained from the
assumption that there is no free charge at any surface of this piezoelectric strip, as Shindo et al. (1998)
did recently for the problem of a piezoelectric half space.
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3. Dynamic description of the electromechanical ®eld

De®ne a pair of Laplace transforms by the equations:

f ��p� �
�1
0

f�t� exp� ÿ pt� dt, f�t� � 1

2pi

�
Br

f ��p� exp�pt� dp �8�

in which ``Br'' stands for the Bromwich path of integration. The time-dependency in Eqs. (4) and (5) are
eliminated by the application of Eq. (8). Depending on the evenness and oddness of the functions w and
f in the variables x and y, the Fourier cosine and sine transforms are then applied, resulting in:

w��x, y, p� � 2

p

� �1
0

A�s, p� exp� ÿ gy� cos�sx� ds�
�1
0

B�s,p� cosh�gx� sin�sy� ds
�

�9�

f��x, y, p� � e15
e11

w��x, y, p� � c��x, y, p� �10�

with

c��x, y, p� � 2

p

� �1
0

C�s, p� exp� ÿ sy� cos�sx� ds�
�1
0

D�s, p� cosh�sx� sin�sy� ds
�

�11�

in which

g�s, p� �
����������������������
s 2 � p2cÿ22

q
�12�

Consequently, the Laplace transform of Eqs. (1) and (2) can be written as

t�zj � mw�,j � e15c
�
,j �13�

D�j � ÿe11c�,j �14�

The Laplace transform of the boundary condition yields:

t�zx�h, y, p� � D�x�h, y, p� � 0, ÿ1 < y <1

t�zy�x, 0, p� � ÿt0=p, 0 < x < a

D�y�x, 0, p� � ÿD0=p 0 < x < a

w��x, 0, p� � f��x, 0, p� � 0, aRx < h �15�
Substituting Eqs. (9) and (10) into Eqs. (13) and (14), and the resulting expressions into Eq. (15), we can
obtain two pairs of dual integral equations for the two unknown functions A�s, p�, and C�s, p�:

2

p

�1
0

A�s, p� cos�sx� ds � 0 a < x < h
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2

p

�1
0

gA�s, p� cos�sx� ds � 2

p

�1
0

sB�s, p� cosh�gx� ds� �t0 � e15D0=e11 �=�mp� 0 < x < a �16�

and

2

p

�1
0

C�s, p� cos�sx� ds � 0 a < x < h

2

p

�1
0

sC�s, p� cos�sx� ds � 2

p

�1
0

sD�s, p� cosh�sx� dsÿD0=�e11, p� 0 < x < a �17�

From the boundary conditions of the ®rst expression in (15), we can obtain the relationship between
A�s� and B�s�, and C�s� and D�s�, such that

B�s, p� � 2s

pg sinh�gh�
�1
0

A�Z, p� Z
Z2 � g2

sin�Zh� dZ �18�

and

D�s, p� � 2

ps sinh�sh�
�1
0

C�Z, p� Z2

Z2 � s2
sin�Zh� dZ �19�

By substituting Eq. (18) into (16), we can ®nally obtain the solution of A�s� by means of a modi®ed
Copson's (Copson, 1961) method

A�s, p� � pa2

2mp
�t0 � e15D0=e11 �

�1
0

���
x

p
j�3�x, p�J0�sax� dx �20�

where J0 (�) is the zero-order Bessel function of the ®rst kind, while the unknown function j�3�x, p� is
determined by the following Fredholm integral equation of the second kind

j�3�x, p� �
�1
0

K�x, Z, p�j�3�Z, p� dZ �
���
x

p
�21�

The symmetric kernel of the integral equation (21) is given by

K�x, Z, p� � �xZ�1=2
�1
0

(�
ag�s=a, p� ÿ s

�
J0�sx�J0�sZ� ÿ

s2exp
�ÿ hg�s=a, p��

ag�s=a, p� sinh
�
hg�s=a, p��I0�axg�s=a, p�

� �I0�aZg�s=a, p��
)

ds �22�

with g�s=a, p� being

g�s=a, p� �
����������������������������
�s=a�2�p2cÿ22

q
�23�

In Eq. (22), I0 (�) is zero-order modi®ed Bessel function of the ®rst kind.
Similarly, the solution of the dual integral equation (17) can be written as follows
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C�s, p� � pa2D0

2e11p

�1
0

���
x

p
w�x�J0�sax� dx �24�

with w�x� being determined by the following Fredholm integral equation of the second kind

w�x� �
�1
0

W�x, Z�w�Z� dZ �
���
x

p
�25�

The symmetric kernel W�x, Z� of the integral Eq. (25) is given by

W�x, Z� � ÿ�xZ�1=2
�1
0

2s

exp�2sh=a� ÿ 1
I0�sx�I0�sZ� ds �26�

Substituting Eqs. (20) and (24) into Eqs. (18) and (19), we can ®nally determine all the four unknown
functions A�s, p�, B�s, p�, C�s, p� and D�s, p�: This will allow the determination of the singular parts of
the dynamic stress and electric displacement in the neighborhood of the crack tip.

4. Intensities of stress and electric displacement

The dynamic stress and electric ®eld can be obtained by determining the inverse of the Laplace
transform of the stress and electric displacement expressions. From the point of view of fracture
mechanics, however, only the singular stress near the crack tip will be derived here. The integral
expression for the Laplace transform of the stress and electric displacement can be obtained by
substituting Eqs. (18)±(20) and (24) into Eqs. (9) and (10), and the resulting expressions into Eqs. (13)
and (14). The divergence of the integral near the crack tip corresponds to the behavior of the intgrand
as the integration variable s tends to in®nity. The portions of A�s, p� and C�s, p� that contribute to the
singular behavior are found from the integrals of Eqs. (20) and (24) by parts:

A�s, p� � pa
2msp
�t0 � e15D0=e11 �j�3�1, p�J1�as� � � � � ,

C�s, p� � ÿ paD0

2e11sp
w�1�J1�as� � � � �

If we now let the crack tip be the origin of the polar coordinate system, shown in Fig. 1, then

r exp�iy� � xÿ a� iy �27�
where i � �������ÿ1p

: From the above results, the stress and electric displacement around the crack tip can be
expressed as

tzy � itzx � K t
3�t��������
2pr
p exp� ÿ iy=2� �O�r� �28�

Dy � iDx � K D
3 �t��������
2pr
p exp� ÿ iy=2� �O�r� �29�

where the intensity factors of stress and electric displacement K t
3�t�and K D

3 �t� can be expressed as
follows
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K t
3�t� �

��t0 � e15D0=e11 �M�t� ÿ e15D0H�t�w�1�=e11
� ������

pa
p �30�

K D
3 �t� � D0H�t�w�1�

������
pa
p �31�

with

M�t� � 1

2pi

�
Br

j�3�1, p�
p

exp�pt� dp �32�

where j�3�1, p� and w�1� are determined by Eqs. (21) and (25), respectively.

5. Numerical examples and discussions

The determination of the intensities of stress and electric displacement requires the solution of
Fredholm integral equations (21) and (25), respectively. In the present work, the solution of these
integral equations was carried out using the method described by Fan (1991), wherein, the improper
integral over s is expanded in Gauss±Legendre quadrature points and weights. To obtain the dynamic
stress intensity factor in the physical plane, we used the method outlined by Miller and Guy (1966).

By examining Eq. (31), one can see clearly that the dynamic electric displacement intensity factor is
proportional to the applied dynamic electric load and is independent of the applied mechanical load.

Fig. 2 shows the variation of the normalized electric displacement intensity factor �K D
3 �t�=�D0�pa�1=2��

with a normalized crack length �a=h�: The ®gure demonstrates clearly that initially the electric
displacement intensity factor develops slowly with the increase in the crack length up to a=h � 0:4:
Beyond that length, the electric displacement intensity increases rapidly with the increase of a=h, tending
to in®nity as a=h approaches unity.

In the transient response computations shown in Fig. 3, a normalized electric load, l � �e15D0=e11�=t0,
is introduced with assigned values 0.1, 0.2, 0.5, 1.0, or 2.0, respectively. These values were selected based
upon the experimental data of Park and Sun (1995) for PZT. The results of the transient response of the
normalized dynamic stress intensity factor (DSIF), K t

3�t�=�t0
������
pa
p � versus normalized time �c2t=a� at l �

Fig. 2. Normalized dynamic electric displacement intensity factors versus normalized crack lengyh a/h.
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0:1 and 2.0 are presented in Fig. 3(a) and (b), respectively. Fig. 3(a) shows that the higher the ratio of
the crack length to the width of the piezoelectric strip, the higher the peak value of the DSIF, while the
dynamic mechanical loads dominates the peak value of DSIF. Fig. 3(b), on the other hand, shows that
while the dynamic electric load dominate the peak value of the DSIF, an inverse relation exists for the
case where a=h is less than 0.8. Beyond this value, the higher a=h, the higher the peak value of DSIF.
These two ®gures also show the signi®cant e�ect of the boundary on the resulting response for di�erent
normalized electric loads �l).

To illustrate the in¯uence of the dynamic electric load on the propagation of a crack in a piezoelectric
material, we have plotted the normalized DSIF versus normalized time as a function of the electric load.
The results for a=h � 0:3 and 0.9 are shown in Fig. 4(a) and (b). From these ®gures, it can be clearly

Fig. 3. Normalized DSIF versus normalized time for di�erent normalized crack length a/h and normalized electric loads: (a)

l � 0:1, and (b) l � 2:0:
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seen that the presence of the dynamic electric ®eld will retard the propagation of the crack at the very
beginning of the impact process. However, after the normalized time exceeds a certain value, say 1.5 or
so, the higher values of l lead to higher values of DSIF. This continues until the normalized time
exceeds 3.5±4.0. Beyond that time, the higher values of l lead to higher values of DSIF resulting from
boundary e�ects �a=h � 0:9�: In the case where a=h � 0:3, the higher values of l lead to lower values of
DSIF. Therefore, one can conclude that at the di�erent stages of the loading process, the presence of
the electric ®eld will promote or retard the propagation of the crack in piezoelectric materials depending
upon the time elapsed and the crack length a/h.

An interesting situation arising from our work is that Eq. (30) indicates that the DSIF provided
accounts for both the electric and mechanical e�ects. It is worth noting, however, that the work of Pak
(1990) and Park and Sun (1995) for quasi-static fracture mechanics indicates that the electric load alone

Fig. 4. Normalized DSIF versus normalized time for di�erent normalized electric loads and crack lengths a/h: (a) a=h � 0:3, and
(b) a=h � 0:9:

Z.T. Chen, S.A. Meguid / International Journal of Solids and Structures 37 (2000) 6051±60626060



cannot produce stress intensity factors at the crack tip. This implies that the stress intensity factor, in
their case, cannot be used as a fracture criterion because of its independence on the electric ®eld.

6. Concluding remarks

In this article, the transient response of a cracked piezoelectric strip of a ®nite width under dynamic
electromechanical loads is investigated. The dynamic intensities of stress and electric displacement have
been given in terms of the Fredholm integral equations of the second kind. Numerical computation of
the resulting coupled dynamic equations reveals that the electric ®eld will retard or promote the
propagation of the crack in a piezoelectric strip, at di�erent stages of the impact loading process,
depending upon the crack length (a/h ) and the electric load �l).
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